Формулы по физике
Содержание:
- Определения и формулы
- Основы специальной теории относительности (СТО)
- Формулы по физике для ЕГЭ
- Физика 7: все формулы и определения
- Основные теоретические сведения
- Работа, энергия, мощность
- Тепловые машины. Формула КПД в термодинамике
- Вопросы для самопроверки
- Физика 8: все формулы и определения
- КИНЕМАТИКА. Теория и формулы (кратко и сжато)
- Динамика
- Шпаргалки по физике за 7 класс
- Термодинамика
- Давление, сила давления
- Тригонометрия
Определения и формулы
Измерение физических величин
Измерение физических величин
Цена деления шкалы прибора
- из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);
- найти разницу между значениями двух соседних числовых меток (А и Б) шкалы и разделить на количество делений между ними (n).
ЦД = (ВГ — НГ) / N
ЦД = (Б — А) / n
Механическое движение
Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t).
Формула:
ʋ = S / t
Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения.
Формула:
S= ʋ*t
Время движения (t) — равно отношению пути (S), пройденного телом, к скорости (ʋ) движения.
Формула
t = S / ʋ:
Средняя скорость (ʋср) — равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден.
Формула:
ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …)
Момент силы М = F*lУсловие равновесия рычага 1212a) F1 / F2 = l1 / l2
б) F1*l1 = F2*l2
Давление газов и жидкостей
Давление однородной жидкости (р) — на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h).
p = g ρ hЗакон Архимеда ВТFВ = ρ*g*VтУсловие плавания тел ВТFВ > FТЗакон гидравлической машины 1212F1 / F2 = S1 / S2Закон сообщающихся сосудов h = const
Работа, энергия, мощность
Механическая работа— .А = F*SКоэффициент полезного действия механизма (КПД) ВПɳ = АП / АВ *100%Потенциальная энергия (ЕП)ЕП = m*g*hКинетическая энергия (ЕК)2ЕК = m*ʋ2 / 2Сохранение и превращение механической энергии ПКEП + EК = constМощность (N)
N = F*ʋ
Основы специальной теории относительности (СТО)
Релятивистское сокращение длины:
Релятивистское удлинение времени события:
Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:
Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:
Энергия покоя тела:
Любое изменение энергии тела означает изменение массы тела и наоборот:
Полная энергия тела:
Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:
Релятивистское увеличение массы:
Кинетическая энергия тела, движущегося с релятивистской скоростью:
Между полной энергией тела, энергией покоя и импульсом существует зависимость:
Формулы по физике для ЕГЭ
Шпаргалка с формулами по физике для ЕГЭ
и не только (может понадобиться 7, 8, 9, 10 и 11 классам).
Записаться на занятия к репетитору.
Для начала картинка, которую можно распечатать в компактном виде.
А потом вордовский файл, который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.
Механика
- Давление Р=F/S
- Плотность ρ=m/V
- Давление на глубине жидкости P=ρ∙g∙h
- Сила тяжести Fт=mg
- 5. Архимедова сила Fa=ρж∙g∙Vт
- Уравнение движения при равноускоренном движении
X=X0+υ0∙t+(a∙t2)/2 S=(υ2-υ02)/2а S=(υ+υ0) ∙t /2
- Уравнение скорости при равноускоренном движении υ=υ0+a∙t
- Ускорение a=(υ–υ 0)/t
- Скорость при движении по окружности υ=2πR/Т
- Центростремительное ускорение a=υ2/R
- Связь периода с частотой ν=1/T=ω/2π
- II закон Ньютона F=ma
- Закон Гука Fy=-kx
- Закон Всемирного тяготения F=G∙M∙m/R2
- Вес тела, движущегося с ускорением а↑ Р=m(g+a)
- Вес тела, движущегося с ускорением а↓ Р=m(g-a)
- Сила трения Fтр=µN
- Импульс тела p=mυ
- Импульс силы Ft=∆p
- Момент силы M=F∙ℓ
- Потенциальная энергия тела, поднятого над землей Eп=mgh
- Потенциальная энергия упруго деформированного тела Eп=kx2/2
- Кинетическая энергия тела Ek=mυ2/2
- Работа A=F∙S∙cosα
- Мощность N=A/t=F∙υ
- Коэффициент полезного действия η=Aп/Аз
- Период колебаний математического маятника T=2π√ℓ/g
- Период колебаний пружинного маятника T=2 π √m/k
- Уравнение гармонических колебаний Х=Хmax∙cos ωt
- Связь длины волны, ее скорости и периода λ= υТ
Молекулярная физика и термодинамика
- Количество вещества ν=N/ Na
- Молярная масса М=m/ν
- Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
- Основное уравнение МКТ P=nkT=1/3nm0υ2
- Закон Гей – Люссака (изобарный процесс) V/T =const
- Закон Шарля (изохорный процесс) P/T =const
- Относительная влажность φ=P/P0∙100%
- Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
- Работа газа A=P∙ΔV
- Закон Бойля – Мариотта (изотермический процесс) PV=const
- Количество теплоты при нагревании Q=Cm(T2-T1)
- Количество теплоты при плавлении Q=λm
- Количество теплоты при парообразовании Q=Lm
- Количество теплоты при сгорании топлива Q=qm
- Уравнение состояния идеального газа PV=m/M∙RT
- Первый закон термодинамики ΔU=A+Q
- КПД тепловых двигателей η= (Q1 – Q2)/ Q1
- КПД идеал. двигателей (цикл Карно) η= (Т1 – Т2)/ Т1
Физика 7: все формулы и определения
«Физика 7: все формулы и определения» — это Справочник по физике в 7 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 3-х страницах) и МЕЛКО (формат JPG, на 1-й странице).
1 файл(ы) 255.55 KB
Физика 7 класс: все формулы и определения МЕЛКО на одной странице
1 файл(ы) 549.72 KB
В пособии «Физика 7: все формулы и определения» представлено 24 формулы
и определения за весь курс Физики 7 класса:
Название формулы (закона, правила) | Формулировка закона (правила) | Формула |
1. Цена деления шкалы прибора |
Для определения цены деления (ЦД) шкалы прибора необходимо: |
ЦД = (ВГ — НГ) / N
ЦД = (Б — А) / n |
2. Скорость |
Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t). |
ʋ = S / t |
3. Путь |
Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения. |
S = ʋ*t |
4. Время движения |
Время движения (t) равно отношению пути (S), пройденного телом, к скорости (ʋ) движения. |
t = S / ʋ |
5. Средняя скорость |
Средняя скорость (ʋср) равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден. |
ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …) |
6. Сила тяжести |
Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг) |
FТ = m*g |
7. Вес |
Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g). |
Р = m*g |
8. Масса |
Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g). |
т = Р / g |
9. Плотность |
Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V). |
ρ = m / V |
10. Момент силы |
Момент силы (М) равен произведению силы (F) на сё плечо (l) |
М = F*l |
11. Условие равновесия рычага |
Рычаг находится в равновесии, если плечи (l1, l2) действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил. |
a) F1 / F2 = l1 / l2
б) F1*l1 = F2*l2 |
12. Давление |
Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности |
p = F / S |
13. Сила давления |
Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S) |
F = р*S |
14. Давление однородной жидкости |
Давление жидкости (р) на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h). |
p = g ρ h |
15.Закон Архимеда |
На тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела. |
FВ = ρ*g*Vт |
16. Условие плавания тел |
Если архимедова сила (FВ) больше силы тяжести (FТ) тела, то тело всплывает. |
FВ> FТ |
17. Закон гидравлической машины |
Силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней. |
F1 / F2 = S1 / S2 |
18. Закон сообщаю-щихся сосудов |
Однородная жидкость в сообщающихся сосудах находится на одном уровне (h) |
h = const |
19. Механическая работа |
Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло. |
А = F*S |
20. Коэффициент полезного действия механизма (КПД) |
Коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП). |
ɳ = АП / АВ *100% |
21. Потенциальная энергия |
Потенциальная энергия (ЕП) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей. |
ЕП = m*g*h |
22. Кинетическая энергия |
Кинетическая энергия (ЕК) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ2). |
ЕК = m*ʋ2 / 2 |
23. Сохранение и превращение механической энергии |
Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной. |
EП + EК = const |
24. Мощность |
Мощность (N) — величина, показывающая скорость выполнения работы и равная:а) отношению работы (А) ко времени (t), за которое она выполнена;б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения. |
N = A / t
N = F*ʋ |
12 (двенадцать) самых необходимых (самых востребованных) формул по физике в 7 классе:
Основные теоретические сведения
Импульс тела
Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:
Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.
Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):
где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.
Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.
Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.
Закон сохранения импульса
При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.
В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:
Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:
Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:
Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.
Сохранение проекции импульса
Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.
Многомерный случай ЗСИ. Векторный метод
В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:
В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.
Работа, энергия, мощность
Механическая работа — это скалярная величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение. Подразумевается, что перемещение произошло в том же направлении, в котором действует сила. |
Формула работы в курсе физики за 7 класс:
A = F × S, где F — действующая сила, S — пройденный телом путь.
Единица измерения работы в СИ: джоуль (Дж).
Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.
Мощность — это скалярная величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения. |
Формула мощности:
N = A / t, где A — работа, t — время ее совершения.
Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.
N = F × v, где F — сила, v — средняя скорость тела.
Единица измерения мощности в СИ: ватт (Вт).
Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.
-
Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.
-
Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.
Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:
Кинетическая энергия |
Пропорциональна массе тела и квадрату его скорости. |
Ek = mv2/2 |
Потенциальная энергия |
Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания. |
Ep= mgh |
Полная механическая энергия |
Складывается из кинетической и потенциальной энергии. |
E = Ek+Ep |
Сохранение и превращение энергии |
Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу. |
Ek+ Ep= const |
Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.
Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии. |
Формула для расчета КПД:
где Ап— полезная работа, Аз— затраченная работа.
КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.
Удачи на экзаменах!
Тепловые машины. Формула КПД в термодинамике
Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.
Коэффициент полезного действия тепловой машины вычисляется по формуле
Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.
Вопросы для самопроверки
-
Что характеризует механическая мощность?
-
Какие существуют единицы измерения мощности в физике?
-
Какая из единиц измерения считается устаревшей?
-
Мощность можно назвать скалярной величиной? Что это означает?
-
Как из формулы нахождения мощности получить работу?
-
Какой буквой обозначается мощность в механике, а какой — в электротехнике?
-
Какую работу производит за 30 минут устройство мощностью 600 Вт?
-
Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?
-
Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?
-
Допустим, автобус отвез пассажиров из города А в город В за 1 час. Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?
Физика 8: все формулы и определения
«Физика 8: все формулы и определения» — это Справочник по физике в 8 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 4-х страницах) и МЕЛКО (формат JPG, на 1-й странице).
1 файл(ы) 4.29 MB
Физика 8 класс. Все формулы и определения МЕЛКО на одной странице
1 файл(ы) 3.66 MB
В пособии «Физика 8: все формулы и определения» представлено 23 формулы
и определения за весь курс Физики 8 класса:
Глава 1. Тепловые явления
• § 1. Тепловое движение. температура
• § 2. Внутренняя энергия
• § 3. Способы изменения внутренней энергии тела
• § 4. Теплопроводность
• § 5. Конвекция
• § 6. Излучение
• § 7. Количество теплоты. Единицы количества теплоты
• § 8. Удельная теплоёмкость
• § 9. Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении
• § 10. Энергия топлива. Удельная теплота сгорания
• § 11. Закон сохранения и превращения энергии в механических и тепловых процессах
• § 12. Агрегатные состояния вещества
• § 13. Плавление и отвердевание кристаллических тел
• § 14. График плавления и отвердевания кристаллических тел
• § 15. Удельная теплота плавления
• § 16. Испарение. Насыщенный и ненасыщенный пар
• § 17. Поглощение энергии при испарении жидкости и выделение её при конденсации пара
• § 18. Кипение
• § 19. Влажность воздуха. Способы определения влажности воздуха
• § 20. Удельная теплота парообразования и конденсации
• § 21. Работа газа и пара при расширении
• § 22. Двигатель внутреннего сгорания
• § 23. Паровая турбина
• § 24. КПД теплового двигателя
Глава 2. Электрические явления
• § 25. Электризация тел при соприкосновении. Взаимодействие заряженных тел
• § 26. Электроскоп
• § 27. Электрическое поле
• § 28. Делимость электрического заряда. Электрон
• § 29. Строение атомов
• § 30. Объяснение электрических явлении
• § 31. Проводники, полупроводники и непроводники электричества
• § 32. Электрический ток. Источники электрического тока
• § 33. Электрическая цепь и её составные части
• § 34. Электрический ток в металлах
• § 35. Действия электрического тока
• § 36. Направление электрического тока
• § 37. Сила тока. Единицы силы тока
• § 38. Амперметр. Измерение силы тока
• § 39. Электрическое напряжение
• § 40. Единицы напряжения
• § 41. Вольтметр. Измерение напряжения
• § 42. Зависимость силы тока от напряжения
• § 43. Электрическое сопротивление проводников. Единицы сопротивления
• § 44. Закон Ома для участка цепи
• § 45. Расчёт сопротивления проводника. Удельное сопротивление
• § 46. Примеры на расчет сопротивления проводника, силы тока и напряжения
• § 47. Реостаты
• § 48. Последовательное соединение проводников
• § 49. Параллельное соединение проводников
• § 50. Работа электрического тока
• § 51. Мощность электрического тока
• § 52. Единицы работы электрического тока, применяемые на практике
• § 53. Нагревание проводников электрическим током. Закон Джоуля—Ленца
• § 54. Конденсатор
• § 55. Лампа накаливания. Электрические нагревательные приборы
• § 56. Короткое замыкание. Предохранители
Глава 3. Электромагнитные явления
• § 57. Магнитное поле
• § 58. Магнитное поле прямого тока. Магнитные линии
• § 59. Магнитное поле катушки с током. Электромагниты и их применение
• § 60. Постоянные магниты. Магнитное поле постоянных магнитов
• § 61. Магнитное поле земли
• § 62. Действие магнитного поля на проводник с током. Электрический двигатель
Глава 4. Световые явления
• § 63. Источники света. Распространение света
• § 64. Видимое движение светил
• § 65. Отражение света. Закон отражения света
• § 66. Плоское зеркало
• § 67. Преломление света. Закон преломления света
• § 68. Линзы. Оптическая сила линзы
• § 69. Изображения, даваемые линзой
• § 70. Глаз и зрение
Физика 8: все формулы. Таблица 1
Физика 8: все формулы. Таблица 2
КИНЕМАТИКА. Теория и формулы (кратко и сжато)
Механическое движение – изменение положения тела относительно других тел с течением времени. Способы описания: словесный, табличный, графический, формулами.
Материальная точка – тело, собственными размерами которого в данных условиях можно пренебречь.
Траектория – линия, которую описывает материальная точка при своём движении в пространстве. По виду траектории все движения делятся на прямолинейные и криволинейные.
Система отсчёта – часы и система координат, связанные с условно выбираемым телом отсчёта (наблюдателем).
Относительность движения – различие скорости, направления и траектории движения в различных системах отсчёта.
Перемещение – вектор, проведённый из начального положения материальной точки в её конечное положение.
Типы движений
1. Равномерное движение
1.1. Равномерное прямолинейное движение
Равномерное движение – движение тела, при котором за равные интервалы времени оно преодолевает равные части пути.
Скорость равномерного движения равна отношению пройденного пути к интервалу времени, за который этот путь пройден.
Скорость равномерного прямолинейного движения равна отношению перемещения к интервалу времени его совершения.
Уравнение равно-прямолинейного движения x = xo + υoxt показывает, что координата линейно зависит от времени.
Мгновенная скорость равна отношению перемещения к бесконечно малому интервалу времени, за который оно произошло.
1.2 Равномерное движение по окружности (равномерное вращение)
Равномерное движение по окружности — это движение, при котором материальная точка за равные промежутки времени проходит равные по длине дуги окружности.
Равномерное движение тела по окружности — это частный и наиболее простой случай криволинейного движения. Хотя при таком движении модуль скорости остается постоянным, это движение с ускорением, которое является следствием изменения направления вектора скорости.
2. Движение с постоянным ускорением
Равноускоренное движение – движение, при котором мгновенная скорость за любые равные интервалы времени меняется одинаково.
Мгновенное ускорение равно отношению изменения мгновенной скорости тела к бесконечно малому интервалу времени, за который это изменение произошло.
Ускорение равноускоренного движения равно отношению изменения мгновенной скорости тела к интервалу времени, за который это изменение произошло.
Уравнение равноускоренного движения y = yo + υoyt + ½ayt² показывает, что координата квадратично зависит от времени. Уравнение υy = υoy + ayt показывает, что скорость линейно зависит от времени.
Центростремительное ускорение – ускорение, всегда направленное к центру окружности при равномерном движении по ней материальной точки. Модуль центростремительного ускорения равен отношению квадрата модуля скорости равномерного движения по окружности к её радиусу.
1 файл(ы) 413.13 KB
Виды движений
Частные случаи решения задач
Кинематика. Таблица кратко.
1 файл(ы) 413.13 KB
Это конспект по физике «Кинематика. Теория и формулы для ЕГЭ» + шпаргалка.
Еще конспекты для 10-11 классов:
Динамика
Законы Ньютона
Первый закон Ньютона
Второй закон Ньютона
Третий закон Ньютона
Закон Гука
Закон всемирного тяготения
Гравитационная постоянная
Сила тяжести
Ускорение свободного падения
- вблизи поверхности Земли (g0);
- на высоте (h) от поверхности Земли (gh).
Вес покоящихся и движущихся тел
Силы трения
Трение покоя
Трение скольжения
Коэффициент тренияДвижение тела под действием силы трения
Движение тела под действием нескольких сил
Движение тела по наклонной плоскости
Движение связанных тел через неподвижный блок
Законы сохранения в механике
Импульс тела
Импульс силы
Закон сохранения импульса
Механическая работа силы
Теорема о кинетической энергии
Потенциальная энергия поднятого телаРабота силы тяжестиПотенциальная энергия деформированного тела
Закон сохранения полной механической энергии
Шпаргалки по физике за 7 класс
В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.
.
.
Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.
Термодинамика
Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:
Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:
Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:
Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:
При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:
При сгорании топлива выделяется количество теплоты равное:
Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):
Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:
Работа идеального газа:
Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p–V координатах. Внутренняя энергия идеального одноатомного газа:
Изменение внутренней энергии рассчитывается по формуле:
Первый закон (первое начало) термодинамики (ЗСЭ):
Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):
Изобарный процесс (p = const):
Изотермический процесс (T = const):
Адиабатный процесс (Q = 0):
КПД тепловой машины может быть рассчитан по формуле:
Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:
Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:
Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):
Относительная влажность воздуха может быть рассчитана по следующим формулам:
Потенциальная энергия поверхности жидкости площадью S:
Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:
Высота столба жидкости в капилляре:
При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:
При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.
Давление, сила давления
Прилагая одну и ту же силу к предмету, можно получить разный результат в зависимости от того, на какую площадь эта сила распределена. Объясняют этот феномен в программе 7 класса физические термины «давление» и «сила давления».
Давление — это величина, равная отношению силы, действующей на поверхность, к площади этой поверхности. Сила давления направлена перпендикулярно поверхности. |
Формула давления:
p = F / S, где F — модуль силы, S — площадь поверхности.
Единица измерения давления в СИ: паскаль (Па).
1 Па = 1 Н/м2
Понятно, что при одной и той же силе воздействия более высокое давление испытает та поверхность, площадь которой меньше.
Формулу для расчета силы давления вывести несложно:
F = p × S
В задачах по физике за 7 класс сила давления, как правило, равна весу тела.
Тригонометрия
Пусть имеется прямоугольный треугольник:
Тогда, определение синуса:
Определение косинуса:
Определение тангенса:
Определение котангенса:
Основное тригонометрическое тождество:
Простейшие следствия из основного тригонометрического тождества:
Синус двойного угла:
Косинус двойного угла:
Тангенс двойного угла:
Котангенс двойного угла:
Тригонометрические формулы сложения
Синус суммы:
Синус разности:
Косинус суммы:
Косинус разности:
Тангенс суммы:
Тангенс разности:
Котангенс суммы:
Котангенс разности:
Тригонометрические формулы преобразования суммы в произведение
Сумма синусов:
Разность синусов:
Сумма косинусов:
Разность косинусов:
Сумма тангенсов:
Разность тангенсов:
Сумма котангенсов:
Разность котангенсов:
Произведение синусов:
Произведение синуса и косинуса:
Произведение косинусов:
Формулы понижения степени
Формула понижения степени для синуса:
Формула понижения степени для косинуса:
Формула понижения степени для тангенса:
Формула понижения степени для котангенса:
Формула половинного угла для тангенса:
Формула половинного угла для котангенса:
Формулы приведения задаются в виде таблицы: