Робототехника в школе: что это такое и для чего она нужна

Содержание:

Какие знания необходимы для создания робототехники?

Современная робототехника строится на знаниях из области программирования, механики, мехатроники, электротехники, электроники и автоматического управления.

Для освоения робототехники на базовом уровне достаточно школьных знаний по математике и физике. Без понимания физики движения и принципов работы механизмов и электродвигателей сложно собрать функционирующего робота.

Затем идут информатика и проектирование

Так как программирование необходимо в робототехнике не меньше математики, важно разбираться в компьютерных науках и информационных системах. Проектирование поможет создавать удобные продукты

Но знания из других инженерных дисциплин тоже будут полезны.

Основные направления в изучении робототехнике:

  • Машиностроение изучает физические составляющие робота — его «тело». Подтемы — механика и сопротивление материалов. Большинство курсов в этом направлении ориентированы на физический дизайн и приведение робота в действие.
  • Электротехника и электроника или «нервная система» занимаются электрическими системами внутри робота, встроенными системами, низкоуровневым программированием и теорией управления. Обычно это автоматизация, которая строится вокруг контроля робота.
  • Информатика — многие специалисты пришли в робототехнику благодаря увлечению компьютерными науками. Инженеры этого направления концентрируются на программном обеспечении робота и высокоуровневом программировании. Среди тем — искусственный интеллект, навигация, техническое зрение, обработка естественного языка и так далее.

MOSS – универсальный инструмент для обучения программированию

Комплекты MOSS от компании Modular Robotics –  это оригинальный конструктор для создания роботов. Разнообразные по назначению, программируемые кубики (Cubelets) легко комбинируются и позволяют собирать сотни разнообразных роботов.

Подбор кубиков в процессе сборки робота имитирует процесс простейшего программирования. Программирование с помощью графического редактора Blockly и MOSS Scratch задает алгоритмы контроля датчиков и управления исполнительными механизмами для движения, поворотов, подачи световых и звуковых сигналов.

Программировать и управлять роботом можно через Bluetooth с помощью смартфона или планшета с клавиатуры или пульта дистанционного управления.

При первоначальной цели на Кикстартер в $100 000 для финансирования проекта удалось собрать $361 293.

modrobotics.com

Makeblock Neuron – платформа электронных строительных блоков

Makeblock Neuron – это удобная для сборки программируемая платформа с использованием электронных строительных блоков. Более 30 типов блоков в виде кнопок, джойстиков, сенсоров и датчиков звука, освещенности, температуры, влажности и других параметров позволяют создавать множество оригинальных гаджетов.

Для соединения блоков между собой предусмотрены подпружиненные разъемы с магнитами. Помогает при этом интуитивно понятная система программирования. Каждый блок уже имеет предварительно запрограммированную функцию. Программировать новые функции можно в приложении Neuron или в редакторе mBlock 5. Для беспроводной передачи сигналов управления используются технологии Bluetooth и Wi-Fi.

Проект Neuron от китайской компании Makeblock получил на Кикстартер одобрение 1464 спонсоров, вложивших в развитие этой идеи $367 129.

makeblock.com

Thimble: новая электронная игрушка каждый месяц

Электронные наборы компании Thimble предназначены для любознательных детей и взрослых. Они помогают в увлекательной форме изучать основы электроники, робототехники, мехатроники и программного обеспечения. Новые наборы деталей для создания высылаются по подписке ежемесячно.

Среди наборов Thimble представлены комплекты для сборки игровых контроллеров, музыкальных синтезаторов, устройств для Умного дома. Можно заняться сборкой более сложных программируемых роботов на микроконтроллере Arduino с управлением через Wi-Fi.

Для начинающих предназначены более простые наборы: различные световые и музыкальные игрушки, термометры, таймеры, дверные звонки. Приложение Thimble включает пошаговые руководства по сборке и позволяет обмениваться опытом и знаниями с другими сборщиками каждой игрушки.

Для развития проекта Thimble через Кикстартер собрано $295 760 от 1776 заинтересованных заказчиков.

thimble.io

MarsCat – домашний робот-кот

Полностью автономный, интерактивный MarsCat – идеальный робот-игрушка с программируемыми возможностями. Он может выражать эмоции мяуканьем, движениями тела и глаз. Сделать поведение MarsCat натуральным и выразительным помогают 16 серводвигателей.

Программируемый микроконтроллер ATMega2560 позволяет реализовать 6 программируемых шаблонов поведения, MarsCat может быть восторженным или задумчивым, энергичным или ленивым, общительным или застенчивым.

Моделировать поведение настоящего животного помогают алгоритмы ИИ, реализуемые миникомпьютером Raspberry PI. Приобретенные одним роботом навыки и шаблоны поведения хранятся в отдельном модуле памяти и могут быть легко воспроизведены в другом роботе простой заменой памяти. Программировать поведение робота MarsCat помогает специальный комплект разработчика.

Реализовать проект MarsCat в жизнь помогли 227 спонсоров, вложивших в эту идею через Кикстартер $213 198.

elephantrobotics.com

Современные исследования

Ученые в области нейронаук и робототехники изучают различные аспекты работы мозга и устройства роботов. Так, в университете Дьюк я проводил эксперименты с нейроинтерфейсами на обезьянах — так как для точной работы интерфейсов необходимо их прямое подключение к зонам мозга и не всегда такие экспериментальные вмешательства возможны на людях.

В одном из моих исследований обезьяна ходила по дорожке, активность ее моторной коры ее мозга, ответственной за движение ног, считывалась и запускала ходьбу робота. При этом обезьяна наблюдала этого ходящего робота на экране, который был перед ней расположен.

Обезьяна использовала обратную связь, то есть корректировала свои движения на основе того, что она видит на экране. Таким образом разрабатываются наиболее эффективные для реализации ходьбы нейроинтерфейсы.

Какие знания необходимы для создания робототехники?

Современная робототехника строится на знаниях из области программирования, механики, мехатроники, электротехники, электроники и автоматического управления.

Для освоения робототехники на базовом уровне достаточно школьных знаний по математике и физике. Без понимания физики движения и принципов работы механизмов и электродвигателей сложно собрать функционирующего робота.

Затем идут информатика и проектирование

Так как программирование необходимо в робототехнике не меньше математики, важно разбираться в компьютерных науках и информационных системах. Проектирование поможет создавать удобные продукты

Но знания из других инженерных дисциплин тоже будут полезны.

Основные направления в изучении робототехнике:

  • Машиностроение изучает физические составляющие робота — его «тело». Подтемы — механика и сопротивление материалов. Большинство курсов в этом направлении ориентированы на физический дизайн и приведение робота в действие.
  • Электротехника и электроника или «нервная система» занимаются электрическими системами внутри робота, встроенными системами, низкоуровневым программированием и теорией управления. Обычно это автоматизация, которая строится вокруг контроля робота.
  • Информатика — многие специалисты пришли в робототехнику благодаря увлечению компьютерными науками. Инженеры этого направления концентрируются на программном обеспечении робота и высокоуровневом программировании. Среди тем — искусственный интеллект, навигация, техническое зрение, обработка естественного языка и так далее.

Роботы с пеленок

Последнее время робототехника становится все более популярным способом для практического знакомства с информатикой даже самых маленьких детей. Наборы робототехники в этом случае выступают как инструменты, с помощью которых дети могут создавать, строить или программировать, повышая технологическую грамотность. Существуют различные наборы, каждый из которых поддерживает разные виды деятельности и стили обучения, в том числе заранее сконструированные роботизированные системы (например, Bee-Bot) и системы, которые дают детям возможность участвовать в создании робота (например, Lego Education WeDo 2.0).

С помощью игры обучающие роботы помогают детям в раннем возрасте развить одну из основных познавательных компетенций математического мышления: вычислительное мышление. То есть они помогают развивать мыслительный процесс, который мы используем для решения различных проблем, посредством упорядоченной последовательности действий – алгоритма.

Конечно, роботы для малышей — это не те конструкторы, которые они встретят в школе, их не нужно долго и кропотливо собирать, они довольно просты в использовании и обычно умеют делать не так много, например, ходить вперед-назад и поворачиваться (как Bee-Bot). Но этого уже достаточно для того, чтобы дети начали понимать принципы алгоритмики и в будущем смогли легко справляться с более сложными задачами.

Немного определений: стандарты по робототехнике

Пойдем по порядку. Итак, слова «исполнительный механизм» говорят нам о том, что робототехники признают роботами только некие механические агрегаты, оснащенные приводами. Этим робототехники отличаются от программистов, которые могут называть роботом или ботом

В конце концов, вполне обычное дело, когда разные области знаний используют одни и те же слова для описания собственных смыслов. Пока просто запомним это разночтение.

Далее в ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 сказано про «определенную степень автономности», понимаемой как

Так все же, господа робототехники, роботы это или не роботы?

Кроме того, этакой несколько наивной формулировкой об «определенной степени автономности» разработчики стандарта как бы намекают на свою неспособность дать точное определение термину «робот». Что такое определенная степень автономности и кем она определена? Является ли признаком робота определенная полная автономность, или же определенная никакая — тоже? Впрочем, действительно, на этот вопрос однозначно не ответить, но, по крайней мере, отмечено стремление хоть к какой-нибудь автономности.

Далее имеем неточность в словах «способный перемещаться во внешней среде», так как перемещение представляет собой

Современный промышленный робот-манипулятор, который не изменяет своего местоположения в пространстве, но отвечает другим предъявленным требованиям (программируется по двум и более степеням подвижности и обладает определенной степенью автономности, особенно если, скажем, оснащен техническим зрением), должно быть, с удивлением узнает, что он роботом не является. Здесь была бы более точна формулировка из предшествующего ГОСТ Р ИСО 8373-2014  от ООО «НИИ экономики связи и информатики «Интерэкомс», который как раз и был заменен обсуждаемым более свежим стандартом, а именно: «движущийся внутри своей рабочей среды».

Кстати, в англоязычном оригинале  это определение звучит так:

Мне кажется, коллеги из НИИ экономики связи и информатики лучше разобрались в роботах, чем коллеги из ЦНИИ робототехники. Шутка (зато термин «степень подвижности» от ЦНИИ РТК более уместен, чем «ось» от «Интерэкомс»). Но и в целом, ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 грешит подобными неточностями (где в переводе, а где и в робототехнической терминологии).

Зато в нём же приведена сноска с еще одним, чуть менее противоречивым, определением робота:

Мы обсудили свежие стандарты по робототехнике. А ведь ещё есть и более ранние. Правда, они были выпущены в 1980-х гг. и уже настолько устарели, что вовсе не помогут нам в понимании, что же такое современный робот.

Что ж, будем считать, что со стандартами стало яснее. А вот с роботами — нет. Какая-то путаница.

Роботы-учёные

Первые роботы-учёные Адам и Ева были созданы в рамках проекта Robot Scientist университета Аберистуита и в 2009 году одним из них было совершено первое научное открыти.

К роботам-учёным безусловно можно отнести роботов, с помощью которых исследовались вентиляционные шахты Большой Пирамиды Хеопса. С их помощью были открыты т. н. «дверки Гантенбринка» и т. н. «ниши Хеопса». Исследования продолжаются.

Система передвижения

Для передвижения по открытой местности чаще всего используют колёсный или гусеничный движитель (примерами подобных роботов могут служить Warrior и PackBot).

Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo).

Роботы BigDog

Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе.

Внутри помещений, на промышленных объектах роботы передвигаются вдоль монорельсов, по напольной колее и т. д. Для перемещения по наклонным или вертикальным плоскостям, по трубам используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками.

Также известны роботы, использующие принципы движения живых организмов — змей, червей, рыб, птиц, насекомых и других типах роботов бионического происхождения.

Робот Tuna

Система распознавания образов

Системы распознавания уже способны определять простые трехмерные предметы, их ориентацию и композицию в пространстве, а также могут достраивать недостающие части, пользуясь информацией из своей базы данных (например, собирать конструктор Lego).

Двигатели

В настоящее время в качестве приводов обычно используются двигатели постоянного тока, шаговые электродвигатели и сервоприводы.

Существуют разработки двигателей, не использующих в своей конструкции моторов: например, технология сокращения материала под действием электрического тока (или поля), которая позволяет добиться более точного соответствия движения робота натуральным плавным движениям живых существ.

Математическая база

Робот Aibo

Помимо уже широко применяющихся нейросетевых технологий, существуют алгоритмы самообучения взаимодействию робота с окружающими предметами в реальном трёхмерном мире: робот-собака Aibo под управлением таких алгоритмов прошел те же стадии обучения, что и новорожденный младенец, самостоятельно научившись координировать движения своих конечностей и взаимодействовать с окружающими предметами (погремушками в детском манеже). Это дает ещё один пример математического понимания алгоритмов работы высшей нервной деятельности человека.

Навигация

Системы построения модели окружающего пространства по ультразвуку или сканированием лазерным лучом широко используются в гонках роботизированных автомобилей (которые уже успешно и самостоятельно проходят реальные городские трассы и дороги на пересечённой местности с учётом неожиданно возникающих препятствий).

Внешний вид

В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов.

В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции — счастье, страх, удивление, грусть, гнев, отвращение — с помощью жестов и мимики.

Робот KOBIAN

Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги.

Производители роботов

Существуют компании, специализирующиеся на производстве роботов (среди крупнейших — iRobot Corporation). Роботов также выпускают некоторые компании, работающие в сфере высоких технологий: ABB, Honda, Mitsubishi, Sony, World Demanded Electronic, Gostai, KUKA.

Когда стартовать

Есть, конечно, робототехнические кружки и для дошкольников, однако технари не советуют профессионально посвящать детей в роботизированный мир ранее 8-12 лет. Для этой сферы важны математические и физические основы, умения проектировать, чертить схемы и составлять алгоритмы.

Возрастные рекомендации связаны и с тем, что к возрасту 8-9 лет дети легче запоминают разные технические «примочки» типа светодиодов и резисторов и их предназначение. В подростковом возрасте они уже активно применяют теорию из математики, информатики и физики, наконец-то понимая, для чего они учили синусы-косинусы.

Хотя, как показывает практика, и среди дошкольников есть немало ребятишек, готовых в конструировании посоперничать с теми, кто уже давно учится в школе.

Робототехника для детей: вклад в будущее или амбиции взрослых?

Прежде всего, необходимо отметить, что робототехника это не только сборка из деталей «чего-то там», на что хватило фантазии

Хотя и в этой области достаточно возможностей проявления собственного воображения, и что немаловажно, практического применения

Итак, робототехника – синтез программирования, математики, электроники и механики. Применение знаний по основам робототехники позволяет создавать и автоматизировать технические системы. На занятиях, которые проходят совсем не как школьные уроки, ребенок может познакомиться с основными теоретическими понятиями и параллельно испытать знания на практике. А значит, это как минимум интересно. Но интерес в достижения не запишешь, поэтому от курсов хочется немного большего.

Робототехника в современном российском образовании

Сейчас в России нет единой политики и стандартов в отношении робототехники в образовании, что обусловливает заметные различия в характере и масштабах ее развития в регионах. Драйверами развития направления зачастую являются педагоги-энтузиасты, частные компании, иногда этим направлением заинтересовываются чиновники от образования, что дает заметный рост в регионе.

Так в Москве наборами робототехники, которые входили в комплектацию инженерных классов, были оснащены большинство образовательных комплексов за счет бюджетных средств.

А, например, в Свердловской области робототехника развивалась усилиями частных компаний и уже позднее в это направление включился Свердловский институт развития образования и государственные структуры.

Иной сценарий был выбран в Пермском крае. В этом регионе Министерство образования обязало директоров в каждой школе создать зоны робототехники, а позже в подобные проекты также были вовлечены и детские сады.

Конечно, в крупных городах и региональных центрах (прежде всего, в Москве и Санкт-Петербурге) вариантов для занятий робототехникой много, и они разнообразны. Программы предлагают как государственные организации (школы, организации дополнительного образования, вузы), так и большое число частных клубов. Содержание программ, продолжительность и цены могут отличаться существенно. Большую долю рынка занимают крупные сетевые кружки, такие как Лига роботов, РОББО, StartJunior.

Основным барьером для развития робототехники в небольших городах и поселках является банальная нехватка денег. Наборы для робототехники дороги, а самостоятельно закупать оборудование школы и детские сады зачастую могут в очень скромных объемах.

Строение робота

Каждый робот состоит из следующих базовых компонентов:

  • Рама или тело робота;
  • Блок управления;
  • Манипуляторы;
  • Ходовая часть.

(Наглядное устройство робота)

Робот может быть любых форм и размеров. Именно рама или тело робота является основой его конструкции и определяет внешний облик. Среднестатистический человек при слове «робот» представляет человекоподобное существо из металла. Этот образ навязан многочисленными фантастическими кинофильмами.

На самом же деле большинство роботов совершенно не похоже на человека. Главное для робота – это его функциональность, а не то, как он выглядит.

Контроль за работой робота осуществляется при помощи системы управления. Она включает в себя огромное количество датчиков, которые помогают технике взаимодействовать с внешним миром.

(На картинке робот Humanoid)

Система управления роботом предполагает целый набор алгоритмов, благодаря которым решаются те или иные задачи. В работе робота происходит постоянный обмен данными между датчиками и центральным процессором (ЦП). Алгоритмы и программное обеспечение создаются человеком.

Для физического контакта с объектами внешней среды используется манипулятор. Данный элемент не является обязательным. Как правило, манипулятор не является частью рамы/тела робота. Используется для решения конкретных задач в различных отраслях.

Ходовая часть робота также не является обязательной, и наличествует лишь у тех роботов, которым необходимо передвижение в пространстве. В качестве средств для перемещения чаще всего используются колеса.

Роботы для нейронауки

Как может использовать роботов нейронаука? Когда мы изготовляем модель биологической системы, мы начинаем лучше понимать, по каким принципам она работает. Поэтому создание механических и компьютерных моделей управления движениями нервной системой человека приближает нас к пониманию нервных функций и биомеханики.

А наиболее перспективное направление использования роботов в современной нейронауке — это проектирование нейроинтерфейсов, систем для управления внешними устройствами с помощью сигналов мозга. Нейроинтерфейсы необходимы для разработки нейропротезов (например, искуственной руки для людей, лишившихся конечности) и экзоскелетов — внешних каркасов тела человека для увеличения его силы или восстановления утраченной двигательной способности.

Один из первых полноценных нейропротезов конечностей, созданный в Лаборатории прикладной физики Джонса Хопкинса, управляется при помощи электрических импульсов мозга

(Фото: youtube.com)

Робот может взаимодействовать с нервной системой через интерфейс в двух направлениях: нервная система может подавать командный сигнал роботу, в робот от своих сенсоров может подавать человеку сенсорную информацию, вызывая реальные ощущения — за счет стимуляции нервов, нервных окончаний кожи, или самой сенсорной коры мозга. Такие механизмы обратной связи позволяют восстановить чувствительность конечности, если она была утрачена. Они также необходимы для более точных движений роботизированной конечностью, так как именно на основе сенсорной информации от рук и ног мы корректируем движения.

Фото: Dan Hixson / University of Utah College of Engineering

Здесь возникает интересный вопрос — следует ли нам управлять через нейроинтерфейс всеми степенями свободы робота, то есть насколько конкретные команды мы должны ему посылать. Например, можно «приказать» роботизированной руке взять бутылку воды, а конкретные операции — опустить руку, повернуть ее, разжать и сжать пальцы — она совершит сама. Этот подход называется совмещенным контролем — через нейроинтерфейс мы даем простые команды, а специальный контроллер внутри робота выбирает наилучшую стратегию для реализации. Либо можно создать такой механизм, который не поймет команды «взять бутылку»: ему нужно посылать информацию о конкретных, детализированных движениях.

Кибернетическое будущее

Подобные исследования ведут нас к инновационным разработкам в будущем. Например, создание экзоскелета для восстановления движений у полностью парализованных людей уже не кажется недостижимой фантазией — необходимо только время. Этот прогресс может сдерживать недостаточная мощность компьютеров, но за последние десять лет развитие и здесь было колоссальным. Вполне вероятно. что скоро мы увидим вокруг людей, которые используют для передвижения не коляски, а легкий, удобный экзоскелет. Люди-киборги станут для нас чем-то обыденным.

Коммерческая разработка таких систем идет по всему миру, в том числе и в России. Например, в известном проекте ExoAtlet разрабатывают экзоскелеты для реабилитации людей с двигательными нарушениями. Центр биоэлектрических интерфейсов НИУ ВШЭ поучаствовал в разработке алгоритмов для этих машин: директор Центра профессор Алексей Осадчий и его аспиранты разработали нейроинтерфейс, запускающий шагательные движения экзоскелета.

Экзоскелеты компании ExoAtlet помогают встать на ноги людям с травмами спинного мозга, перенесенным инсультом и другими нарушениями

(Фото: ExoAtlet)

Быстрое развитие человекоподобных роботов-андроидов тоже становится реальностью. Вполне вероятно, что скоро вокруг нас будут ходить роботы, которые будут имитировать нас во многих аспектах — двигаться как мы и думать как мы. Они смогут выполнять часть работы, прежде доступной только человеку.

Очевидно, что мы будем видеть развитие и робототехники, и нейронаук, и эти области будут сближаться. Это не только открывает новые возможности, но и создает новые этические вопросы: как мы должны относиться к роботам-андроидам или людям-киборгам.

И все-таки пока человек лучше, чем робот, во многих отношениях. Наши мышцы наиболее экономичны: достаточно съесть бутерброд, чтобы хватило энергии на весь день. У робота заряд батарей закончится через полчаса. И хотя может быть гораздо мощнее, чем человек, он часто оказывается слишком тяжелым. Элегантность и оптимизация энергетических затрат — тут человек пока превосходит робота.

Хотя недалеко то будущее, когда это изменится — в этом направлении работают десятки тысяч талантливых ученых и инженеров.

Подписывайтесь также на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.

Разбираемся с терминами и понятиями

Начиная разговор о робототехнике в школе, неплохо было бы определиться, что мы понимаем под терминами «робот», «робототехника» и «образовательная робототехника». Вполне развернутый и подробный ответ на этот вопрос можно найти в стандартах ГОСТ Р ИСО 8373-2014 «Роботы и робототехнические устройства. Термины и определения» или в соответствующем международном стандарте ISO 8373:2012 «Robots and robotic devices — Vocabulary»:

Робот (robot) — приводной механизм, программируемый по двум и более осям, имеющий некоторую степень автономности, движущийся внутри своей рабочей среды и выполняющий задачи по предназначению».

Робототехника (robotics) — наука и практика разработки, производства и применения роботов.

Образовательная робототехника, в свою очередь, – это междисциплинарная учебная среда, основанная на использовании роботов и электронных компонентов в качестве общей составляющей для улучшения развития навыков и компетенций у детей и подростков. Это, прежде всего – дисциплины, именуемые STEAM   (science – наука, technology – технология, engineering – инжиниринг, arts and math – искусство и математика), хотя робототехника может также затрагивать и  другие области, такие как лингвистика, география и история.

Всех роботов условно можно разделить на два типа – промышленные и обслуживающие (сервисные) устройства

Те, которые используются в школах и колледжах, в большинстве своем, относятся к обслуживающим, но тут стоит обратить внимание на важный нюанс – целью создания таких роботов является не новый продукт или сервис, а именно образование – то есть передача связанных знаний о мире, технике, социальных взаимодействиях или иных навыков посредством конструирования и программирования робота. То есть робот в образовании – это не цель, а только лишь инструмент

Так что же такое робот?

Исходя из приведенных выше определений, если бы мы захотели чёткой однозначности понятий, мы могли бы пойти двумя путями:

  • расширительное толкование: считать роботами вообще всё, что подходит хоть под какой-то из перечисленных признаков;
  • ограничительное толкование: не признавать роботами вообще ничего, что не соответствует строго всем признакам.

В первом случае ситуация не сильно изменится, в сравнении с имеющимся положением дел. Всё равно сейчас робототехники, условно говоря, как хотят, так и называют свои и чужие разработки.

Думаю, надо честно признать, что на данный момент мы не сможем придумать бесспорное, устраивающее всех определение понятия «робот», которому, к тому же, все будут неукоснительно следовать. Да оно и не нужно! Иначе, разговаривая с не подкованными теоретически людьми (заказчиками, коллегами, знакомыми), мы вынуждены будем постоянно их поправлять: «Нет, это не робот. А вот это, да, кажется робот… Если я не ошибаюсь… Подождите, проверю…» Это утомительно и отвлекает от других дел, полезных.

Итак, во-первых. На уровне обиходного использования вполне можно согласиться с интуитивной трактовкой неспециалистами понятия «робот» — рукотворной (искусственно созданной) сущности (механического устройства или компьютерной программы), которая движется, функционирует (выполняет работу, производит вычисления) без непосредственного присутствия человека.

Во-вторых. Для себя, мощных робототехников, нам будет полезно знать несколько типовых признаков, характеризующих (но не всегда определяющих) робот:

  • приводной механизм — обязательный признак;
  • программное управление — обязательный признак;
  • выполнение поставленных человеком задач — обязательный признак;
  • некоторая (большая или меньшая) автономность — а этот признак размыт даже в своей постановке и отражает, скорее, стремление к автономности.

И при этом мы помним, что в других областях могут быть собственные определения понятия «робот», такие как , родившееся в мире информационных технологий. Виртуальный мир — он вообще склонен переносить понятия из реального мира к себе, одновременно дополняя их своими, новыми смыслами.

Ну, и в-третьих. Для буквоедов и заядлых классификаторов приведём определение робота на основе , только немного исправленное:

Вот так. Пусть каждому будет своё, и все будут довольны.

В заключение, в качестве юмора, обращаю внимание на цитату, взятую к данной статье. Не кажется ли вам, что она очень забавно и точно отражает реальность? Действительно, на заводах работают манипуляторы, квартиры убирают пылесосы, в небе летают беспилотники, в космосе — спутники, а на Луну, планеты и астероиды высаживаются зонды, межпланетные станции и планетоходы

Роботы, на самом деле, гораздо раньше заняли место в нашей жизни, чем мы это заметили! Даже если их не называют роботами, имеет ли это для них значение? Нет, они просто делают свою работу

Так что пожелаем всяческих успехов разработчикам стандартов в их трудном и важном деле формулирования точных определений. Для нас же важнее делать нашу работу

К тому же, теперь мы немного ориентируемся и в терминологических дебрях.

Управление роботом с датчиком освещённости

Датчик освещённости позволяет роботу ориентироваться на
поверхности стола, например, ехать вдоль границы между белой и чёрной областями
(по краю чёрной линии). Фотодиод подсвечивает поверхность, фотоприёмник «ловит»
отражённые лучи и измеряет их интенсивность.

Наиболее популярная задача этого типа — движение по линии. С помощью тренажёра
можно изучить различные законы управления — релейный, пропорциональный, и
даже ПИД-управление (пропорционально-интегрально-дифференциальное).

Тренажёр «Движение с датчиком освещённости»
Практическая работа с тренажёром «Движение с датчиком освещённости»
04.10.2019

Примеры программ для робота с датчиком освещённости

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector